Finite Temperature Casimir Effect for a Massless Fractional Klein-gordon Field with Fractional Neumann Conditions
نویسندگان
چکیده
This paper studies the Casimir effect due to fractional massless Klein-Gordon field confined to parallel plates. A new kind of boundary condition called fractional Neumann condition which involves vanishing fractional derivatives of the field is introduced. The fractional Neumann condition allows the interpolation of Dirichlet and Neumann conditions imposed on the two plates. There exists a transition value in the difference between the orders of the fractional Neumann conditions for which the Casimir force changes from attractive to repulsive. Low and high temperature limits of Casimir energy and pressure are obtained. For sufficiently high temperature, these quantities are dominated by terms independent of the boundary conditions. Finally, validity of the temperature inversion symmetry for various boundary conditions is discussed. PACS numbers: 11.10.Wx
منابع مشابه
Analytical solutions for the fractional Klein-Gordon equation
In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.
متن کاملApplications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملTopological Symmetry Breaking of Self–interacting Fractional Klein–gordon Field on Toroidal Spacetime
Quartic self–interacting fractional Klein–Gordon scalar massive and massless field theories on toroidal spacetime are studied. The effective potential and topologically generated mass are determined using zeta function regularization technique. Renormalization of these quantities are derived. Conditions for symmetry breaking are obtained analytically. Simulations are carried out to illustrate r...
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملFinite Temperature Casimir Effect in Kaluza-klein Spacetime
Abstract. In this article, we consider the finite temperature Casimir effect in Kaluza-Klein spacetime due the the vacuum fluctuation of massless scalar field with Dirichlet boundary conditions. We consider the general case where the extra dimensions (internal space) can be any compact connected manifold or orbifold without boundaries. Using piston analysis, we show that the Casimir force is al...
متن کامل